
 

  
Abstract— The use of adaptive filtering as a means of signal 

processing in sensor applications provides stability and accuracy 
when operating with sensors that have slowly varying coefficients 
in their transfer function.  This work was conducted using a non-
linear state space model of a capacitive micromachined ultrasonic 
transducer (CMUT) based on FEM data to analyze the simulated 
effects of adaptive infinite impulse response (IIR) filtering on a 
through transmission CMUT system.  A number of different IIR 
filter algorithms were investigated and the convergence rates, 
final mean squared error (MSE) and filter stability among other 
parameters were analyzed. Included in these algorithms were the 
full gradient descent method, simplified gradient method, 
Feintuchs’ method, recursive predictor error (RPE) method, 
orthogonal triangular (QR) decomposition and pseudo linear 
regression recursive least squares (PLR-RLS).  The adaptive IIR 
filters were applied for system identification, equalization and 
active noise cancellation (ANC) operations for the study.  
Exponential convergent approximation time coefficient, a 
measure of the adaptive filter’s ability to track changes, for the 
ANC case has been shown to vary by more than 20%.  MSE 
variations for the differing algorithms of greater than 10dB have 
been obtained and filter stability was found to be dependant on a 
number of internal algorithm parameters, such as the 
numerator/denominator adaptation ratio, as well as the choice of 
algorithm. 
 

Index Terms— Adaptive IIR, CMUT, system identification, 
Feintuch LMS 

I. INTRODUCTION 
MUTs utilize electrostatic forces to generate a pressure 
within the operating medium [1].  The direct generation of 

the pressure wave within the medium allows CMUTs to 
circumnavigate the requirement for coupling layers as seen in 
piezoelectric devices.  CMUT ultrasonic systems may also 
suffer from a drift in transfer function coefficients as a result of 
varying environmental conditions such as temperature [2].  As 
a consequence the electroacoustic transfer function of these 
devices can be said to have coefficients that are medium 
dependant as is evident from an analysis of any of the common 
analytical models [3].  Although the modification in the device 
transfer function is deterministic, measurement of all the 
required input parameters and analytical compensation for drift 
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is impractical.   
The problem of variable transfer function coefficients also 

arises frequently in telecommunications systems, which use a 
compensation method known as adaptive filtering.  This 
method varies the transfer function of a filter based on an error 
vector developed from a desired and obtained signal.  The 
methods used are iterative and can thus be viewed as an 
application of linear prediction.  Adaptive filtering in sensor 
systems allows for system stability in the presence of an 
uncertain transfer function [4] that otherwise causes the sensor 
readings obtained to be unreliable.  There are two major 
regimes for adaptive filtering, adaptive FIR and adaptive IIR 
filtering [5].  Adaptive IIR filters have a number of advantages 
over their FIR counterparts in acoustic systems as there is an 
inherent level of recursion [6] and this form of adaptive filter 
has a smaller footprint for an equivalent order of transfer 
function to the FIR case [7] which results in miniaturization on 
integrated circuits.   

The use of adaptive filtering in sensor systems has been 
shown to have a number of advantages [8] with extensive use 
of FIR adaptive filters, however an analysis of the adaptive 
algorithms in the IIR case for ultrasonic systems appears to be 
unpublished.  There are a number of commonly used adaptive 
algorithms that have been shown to be stable, but performance 
parameters vary depending on the system.  The performance of 
adaptive filters is a trade off between differing parameters 
including stability, convergence rate and final mean squared 
error (MSE) [9].  The complexity of the tuning process for the 
adaptation parameters is also a consideration.  With the 
continued reduction in the cost-function of signal processing 
power enhanced ultrasonic sensor performance is achievable 
through the use of digital signal processing in an ever 
increasing number of applications.  This provides the potential 
for enhanced time of flight readings in systems that are cost 
sensitive as well as increased robustness with iterative 
correlation matrix calculation.  Adaptive IIR systems may 
provide performance enhancement across a wide range of 
ultrasonic applications. 

 Section II describes the system model used in this work and 
gives a brief overview of the adaptation functions analyzed and 
the structural layout of the system.  Section III presents the 
results from the simulation of the various methods and Section 
IV the conclusions of this work. 
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II. THEORETICAL BACKGROUND 

A. System Modeling 
The non-linear of a CMUT used in this work was originally 

developed by Lohfink and Eccardt [3], which has been shown 
to be an accurate estimation of the finite element model 
response.  This work was expanded upon by Zhou [10] who 
developed a state space receiver model. The model is based on 
a 7.5MHz immersion device with a 300nm air gap and 25.6μm 
radius membrane.  Most 1D CMUT models are based on two 
differential equations, the first of which is a general expression 
for the mechanical behavior of a piston in a waveguide: 
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where m is mass, b is damping and k is spring constant, 
subscript ps is for equivalent piston of the membrane and fl is 
the fluid interacting with the device, ω is the position of the 
membrane, U is the voltage across the device, Fext is the 
incident pressure force on the membrane, hgap is the gap height, 
ε0 is the permittivity of free space and Ael is the electrode area 
of the device.  The second differential equation describes the 
electrical behavior of the model and is given by 
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where Cp is the passive capacitance and I is the electric current.   
The accuracy of these models is sufficient for this work as 
adaptive filters by their nature do not require precise system 
modeling for meaningful simulation.  The system layout for the 
three scenarios studied, system identification, equalization and 
ANC can be seen in Fig 1.    
 

 
                        (a)                                     (b) 

 
(c) 

Fig 1: Layout for (a) System Identification, (b) Equalization and (c) ANC 

 
                             (a)                               (b) 
Fig 2: IIR Adaptive Filter Structure (a) Output Error (b) Equation Error 

 

B. Adaptation Functions 
To date a handful of adaptive functions have proven to be 

the most robust and efficient, which include those studied in 
this work: full gradient descent [11], simplified gradient [11], 
Feintuchs’ method [12], recursive predictor error (RPE) [13], 
orthogonal triangular (QR) decomposition [14] and pseudo 
linear regression recursive least squares (PLR-RLS) [15].  All 
of the methods operate on the filter structure as shown in Fig 2.  
This structure may be defined by  
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for the case of output error, where the numerator coefficients 
a(k) and denominator coefficients b(k) at time step k are as 
shown in Fig 2 and of length N and M respectively.  The 
weight vector w update for full gradient and simplified gradient 
descent is defined by 
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where μ, the step size, defines the aggression of the adaptation 
algorithm.  For the full gradient descent LMS the α and β 
updates are defined by 
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The simplified gradient descent assumes slowly varying 
channel coefficients and the update for the α and β vectors are 
simply given by  

1( ) ( 1)n nk kα α −= −                               (8) 

1( ) ( 1),m mk kβ β −= −                              (9) 
 
for all values other than α0 and β1 which are defined by (6) and 
(7) respectively.  For the Feintuch LMS algorithm the 



 

simplifying assumption is made that all derivatives of past 
outputs with respect to current weights are zero.  As a 
consequence the weight update is given by 
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The LMS RPE function uses a recursive estimate R-1(k), of the 
inverse correlation matrix at time step k, with a weight update 
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The PLR-RLS weight update is given by 
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the QR RLS algorithm weight update is more involved and 
given in detail in [14].  

III. RESULTS 

A. Identification and Impulse Response 
When presented with the system identification problem for the 
system described above and in [3] as is shown in Fig 1, the 
MSE for the adaptive algorithms as described previously may 
be seen in Fig 3.  It is evident that although the QR RLS 
algorithm results in the largest single error measurement during 
its adaptation of all the algorithms the convergence rate is 
significantly faster and thus convergence is achieved before 
0.25x10-5 seconds, significantly sooner than it’s nearest and 
much less stable rival full gradient LMS.  The impulse 
response data for the converged systems however clearly 
indicates RLS as the best final system estimator with QR RLS 
being reasonably close in approximation.  The impulse 
response results can be seen in Fig 4 where the system was 
excited with a Kronecker delta at a simulation time of 5μs, 
transportation delay is not included in the channel model.  All 
methods show reasonable approximation of the leading peak 
but only QR-RLS and RLS accurately capture the full pulse 
shape.   

 

Fig 3: System Identification Error for Various Adaptive Filters 

 
Fig 4: Impulse Response of Identified Systems 

B. Equalization 
Analysis of the final squared error showed in excess of 10dB 

difference between the Simplified Gradient and the RLS 
methods.  Using a simple exponential fit to the convergence 
data in Fig 3 the time constant varies by approx. 31%.  In 
analyzing the MSE for adaptive equalization, as expected, RLS 
was found to have the lowest final error with QR having the 
most rapid convergence.  The usefulness of adaptive 
equalization is shown in Fig 5 in which the RLS system has 
compensated for distortion of a PRBS (Pseudo Random Binary 
Sequence), this distortion may vary with time.  In Fig 5(a) the 
heavily distorted response characteristic from the input 
waveform Fig 5(b) is transformed to a close approximation in 
Fig 5(c).  Perfect matching is not achieved for a number of 
reasons, precision error prevents this with any numerical 
method but more significantly the non-linear model is used in 
this work and this will also result in some distortion.  
Additionally in all adaptive functional approximation there is a 
compromise between rate of convergence and final settling 
error.  As with the other convergence observations QR 
outperforms the other algorithms in terms of speed of 
convergence but the standard RLS achieves a lower final error.   

 



 

Fig 5: RLS Unequalized, Desired and Equalized Signals 

 
Fig 6: RLS ANC and equalization signals for RLS 

C. Equalization and ANC 
The most important test scenario for the application of 

adaptive IIR methods on the modeled system is with both 
equalization and ANC.  In this scenario a noisy channel (noise 
level of –8dB) with channel effects is compensated for by the 
adaptive system either as a means of monitoring varying 
channel coefficients or noise.  The results of the adaptation of 
the RLS case, which was found to be the most easily tuned and 
most stable design once again, are shown in Fig 6.  Using a 
zero-crossing detector results in perfect signal reconstruction 
for the simulated conditions using the RLS algorithms after 10 
bytes of data are transmitted across the channel as shown in 
Fig 6.   

The convergence of the numerator and denominator 
coefficients for the RLS algorithm, which was found to be the 
optimum for this application, can be seen in Fig 7.  It is clearly 
observable that following coefficient convergence, drift around 
the optimum is found.  More sophisticated adaptation 
algorithms can overcome this with variable μ adaptation, but 
for the purposes of this work this oscillation is not a concern.  
It was found that filter order, as expected, increases the 
accuracy of the approximation but only up to a point, after 
which the affect is negative.  This turning point is dependant 
on the error surface and thus is not easily quantified.  

 
Fig 7: RLS coefficient convergence for ANC and equal. 

IV. CONCLUSION 

The convergent parameters have shown the advantages of 
each of the differing algorithms depending on the designer’s 
requirements.  The QR algorithm was found to outperform the 
other algorithms on most metrics, most notably the 
convergence rate but not all, with the RLS algorithm 
outperforming it on final error.  There are a number of 
situations that the designer should be aware of where the more 
easily implemented algorithms are in fact the better choice, e.g. 
whether the implementation is to be in software or hardware, 
and many of the algorithms were designed around one 
implementation or the other. 
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