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Abstract — Elastography and strain imaging often use ultrasound to measure mechani-
cal properties of soft tissues. These techniques generally examine radiofrequency signals
from an ultrasound scanner. This study investigates the feasibility of strain estimation
directly from an ultrasound B-mode image, using segmentation and shape analysis. Sev-
eral thousand computer generated tissue mimicking phantoms with stiff inclusions were
produced and analysed, evaluating the change in shape when the phantom is subjected
to 1-D compression in order to estimate strain. The resulting stiffness measurements
are accurate to within 8% of the actual values.
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I Introduction

Elastography is a well-established technique used
to estimate stiffness distribution and other me-
chanical properties in soft tissues that are sub-
jected to a physical compression. This method
usually analyses radiofrequency (RF) signals ob-
tained from an ultrasound scanner and typically
employs various cross-correlation techniques to
compute the rate of change of tissue displacement,
or strain, which in turn is used to calculate the
stiffness distribution [1].

Studies have shown that changes in tissue stiff-
ness can be linked to pathological changes i.e. dif-
ferent types of cancers have characteristic ranges
for their Young’s Modulus value [2]. For example,
the elasticity of a nodule serves as an indication
of its level of malignancy, cancerous tissue gener-
ally being stiffer than benign masses or healthy
tissue. Clinicians have often used manual palpa-
tion to examine the stiffness of such inclusions in
the human breast and prostate. This method is
common, but the results are open to user interpre-
tation as a recently published study has shown [3].
Previous palpation studies have also demonstrated
that manual measurements of lesion height, width
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and area in both B-mode and strain images may
be used to differentiate between malignant and be-
nign lesions, although of concern was the difficulty
in manually tracing lesion boundaries in a busy
clinical setting [4][5].

Recently, elastography and other forms of elas-
ticity imaging have used RF signal processing
methods and ultrasonic B-mode image processing
as a means to automate the palpation process and
accurately measure the stiffness of tissue regions
[6]. In conventional elastography, compression lev-
els are limited (usually 1mm) due to geometric and
material nonlinearities. Large deformations thus
require complex non-linear processing of RF sig-
nals [7].

Recent work has highlighted the differences in
stiffness between malignant and benign growths
using ultrasonic shear waves [8]. Such techniques
are computationally intensive as the entire im-
age must be processed and access to the raw RF
ultrasonic signals is also required. In addition,
small levels (<2%) of strain are required to pre-
vent phase wraparound and aliasing in the image,
requiring significant subsampling and making the
results more susceptible to error. Hence, a more
targeted approach could lead to significant reduc-
tions in computational requirements.



The lesions are usually located in advance of
conventional elastography using B-mode ultra-
sound imaging, and whilst a significant body of
work is devoted to imaging low contrast lesions
such as those produced by HIFU (High Intensity
Focused Ultrasound) heating, the size and shape
of the target is usually known and this informa-
tion may be used in a straightforward technique
to determine the tissue stiffness.

The method being explored in this work utilises
image segmentation and shape fitting techniques
rather than RF signal analysis to evaluate the
change in shape of a tissue mass as it is deformed
under a mechanical compression. Provided that
the tissue mass is visible, such a change in shape
can be determined solely from the B-mode image
in the ultrasound scanner and thus the need for
analysis of the raw RF signal data to produce an
elasticity image can be eliminated.

The work described here examines the feasibility
of using an automated shape fitting algorithm and
associated image processing methods to evaluate
tissue stiffness and hence malignancy. Since this
technique does not make use of cross-correlation,
and looks only at the final image being generated,
the compression limit for elastography does not
apply, hence much larger practical deformations
can be applied to the tissue sample. Larger de-
formations produce a more pronounced change in
shape, thus simplifying the strain estimation pro-
cess. In addition to this, making use of large com-
pressions eliminates the need for precision equip-
ment required to introduce small compressions to
a tissue sample.

Shape fitting algorithms are used here to deter-
mine the outline of the tissue mass within the con-
ventional B-mode image, and then the deformation
of this shape under various levels of strain, up to
approximately 25%, are used to estimate the stiff-
ness of the tissue.

II Simulation

Computer models of homogenous tissue mimick-
ing phantoms with stiff cylindrical inclusions were
generated with Matlab. These were modelled
as an array of 12,000 randomly positioned ul-
trasound scatterers within specified dimensions
(x, y, z) = (50mm, 10mm, 50mm). The scatter-
ers were assigned random amplitudes based on a
Gaussian distribution. The amplitude of each scat-
terer within the stiff inclusion was multiplied by a
scattering factor of ten to replicate highly scatter-
ing, or hyperechoic, inclusions. One-dimensional
compression was applied to each model, reducing
its overall height and distorting the shape of the
cross section of the inclusion from a circle to an
ellipse. The soft tissue was assumed to be incom-
pressible, hence the area of the shape in the image

Table 1: Parameter ranges for simulated phantoms
Parameter Range of values

Diameter of inclusion 10mm, 15mm, 20mm

Stiffness contrast between
inclusion and background

2:1, 3:1, 4:1, 5:1

Compression/deformation
applied to phantom

2, 4, 6, 8, 10, 12, 14
mm (axial direction)

Object location within
phantom

Varied arbitrarily

remains constant during compression.
Using Jensen’s FIELD II software, a well-

validated and established simulator [9], an
ESAOTE 8MHz, 30-element, 40mm, linear ultra-
sound transducer available in-house was modelled
and used to simulate a B-mode image of each tis-
sue phantom in the xz -plane. The phantoms were
produced with variations in a number of physical
properties such as size, shape and stiffness of inclu-
sions, as well as the degree of deformation applied,
as described in Table 1. Each phantom specified
was reproduced 50 times so that a statistical anal-
ysis could account for any random anomalies in a
given phantom. In total, 23,500 (470×50) phan-
tom/image pairs were produced and examined for
the statistical study.

III Shape Analysis Algorithm

The goal of the shape analysis algorithm used
was to automatically segment the stiff inclusion in
the input ultrasonic B-mode frame from the back-
ground based on its brightness, texture and size
within the image. This was achieved using a com-
bination of techniques including binary threshold-
ing, image filtering, edge detection, texture anal-
ysis, distance transforms and mathematical mor-
phology. Once the shape had been segmented, the
algorithm measured various dimensions and prop-
erties of the shape. The algorithm is detailed be-
low.

a) Image Processing

The original B-mode image was read into memory
as a greyscale image (Figure 1(a)). This was con-
verted to a logical image (i.e. a 2-D binary array)
through the application of a predefined threshold
(Figure 1(b)). Given a greyscale image I(x, y) and
a threshold level θ, the binary image B(x, y) is
computed as follows:

B(x, y) =
{

1, I(x, y) > θ
0, I(x, y) ≤ θ (1)

In this binary image, the black foreground pix-
els were not clearly separated from the background
regions. The object in the centre of the frame



(a) Original (b) Binary array (c) Filtered image

(d) Thresholded (e) Distance map (f) Object outline

Fig. 1: Image processing stages

consisted of a mixture of black and white pixels
(approx. 50%–50%), while there were still many
small black regions spread out over the entire im-
age, which could be misinterpreted as part of the
foreground object and as such needed to be elim-
inated. This effect was a result of the ultrasound
scatterers, which were randomly placed through-
out the phantom. However, despite the haphazard
appearance of these background fluctuations, the
texture was quite consistent and the application
of an entropy filter served to further differentiate
the “mixed” nature of the foreground region when
compared to the more regular colour of the back-
ground. This filter traversed the image and as-
signed to each pixel the value of the entropy of
the 9×9 neighbourhood region that surrounded it.
Entropy is a statistical measure of randomness in
the image, described by:

e = −
L−1∑
i=0

p(zi) log2 p(zi) (2)

where p(z) is the histogram of brightness levels in
the region and L is the number of possible inten-
sity levels in the image (e.g. 2 in a binary im-
age, 256 in an 8-bit greyscale image) [10]. By ap-
plying a 13×13 median filter [10] to the entropy-
filtered image (which smoothed the noise in the
image while preserving any shapes) it can be seen
(Figure 1(c)) that the background now had a much
more consistent appearance to it than in the orig-
inal. The image was again thresholded, resulting
in a binary image that clearly distinguished be-
tween foreground and background regions in the
image. However, in this representation, the object
region was generally found to have minor segments
protruding from its outer edges. To remedy this,

the resultant binary image was morphologically
opened, as in Figure 1(d), which also removed any
small unwanted white pixels from the background.
The morphological opening [11] performed an ero-
sion (shrinking) followed by a dilation (expansion)
using a circular structuring element with a diam-
eter of 7 pixels. Mathematically, the dilation of
a binary image B by a structuring element S is
based on Minkowsky addition [12] and is defined
as:

B ⊕ S =
⋃

t∈S

Bt, Bt = {b+ t|b ∈ B} (3)

where Bt is the translation of B by a movement
vector t. Erosion, or Minkowsky subtraction [12],
can be thought of as the opposite action to dilation
(although the two are not commutative) and can
be defined as follows:

B 	 S =
⋂

t∈S

Bt, Bt = {b+ t|b ∈ B} (4)

Morphological opening is thus defined as [13]:

B ◦ S = (B 	 S)⊕ S (5)

b) Shape Analysis

From the logical image in Figure 1(d) a label ma-
trix was created using connected component la-
belling [13] with 4-point connectivity, and the Eu-
clidean distance transform was also computed [14].
A label matrix was produced from the binary im-
age by grouping all connected pixels into objects
and allocating a label to each object, assigning
the value of the object label to all pixels within
that object. The distance transform creates a Eu-
clidean distance map in which the value of each
pixel represents the straight line distance from that
pixel to the nearest boundary point, calculated us-
ing a Euclidean metric i.e. given two points (xa,
ya) and (xb, yb), the Euclidean distance DE is
computed from Equation 6.

DE =
√

(xa − xb)
2 + (ya − yb)

2 (6)

The output from the distance transform pro-
vided an indication of the location of the largest
object in the image (Figure 1(e)). Using these re-
sults the image processing algorithm performed an
iterative search on the labelled regions in the ma-
trix in order to find the largest object that was
entirely contained within the borders of the im-
age. This was achieved by locating the maximum
of the distance transform and ensuring that it was
above an acceptable threshold, which indicated if
a sufficiently large object had been detected. This
location was then referenced in the label matrix
and should coincide with one of the labelled ar-
eas, identifying the region of interest. If this re-
gion intersected the perimeter of the image, it was



deemed unsuitable as the entire object may not be
visible in the image. In this case, the object was
removed from the matrix, the distance transform
was recomputed and the process repeated until a
sufficiently large object was found that was fully
contained within the image boundaries or when the
maximum of the distance transform was below the
acceptable threshold (i.e. remaining regions were
too small and the algorithm failed). The advantage
of using the distance transform in this manner is
that it will usually select the object on the first it-
eration, but it is still robust enough to ignore any
undesired regions in the image.

When the desired region in the label matrix had
been identified, all other regions were removed and
the label matrix was simplified to a binary image
containing a single foreground object. The out-
line of the shape was determined using Sobel edge
detection [15], as shown in Figure 1(f). Various
shape parameters of this foreground object were
subsequently measured, including area, centroid,
height, width, bounding box, and then stored for
calculation of the strain.

The 1-D strain calculation focused on the height
of a detected region before (hpre) and after (hpost)
compression of the phantom, height being mea-
sured as the distance between the upper and lower
extreme points of the target shape. The strain ε
of the observed object can thus be computed from
Equation 7. Young’s modulus, or stiffness, is the
ratio of stress to strain. Therefore if it is assumed
that there is a constant stress throughout the tis-
sue sample, then the reciprocal of the calculated
strain provides a good indication of stiffness.

ε =
hpost − hpre

hpre
=

∆h
hpre

(7)

For each phantom where a deformation was ap-
plied, the height measurement hpost was com-
pared to that from the corresponding uncom-
pressed phantom hpre and these values were used
to calculate strain in the object as in Equation 7.

Figure 2 shows an example of increasing levels
of compression being applied to a computer gener-
ated phantom. The phantom in question contained
a 20mm diameter cylindrical hyperechoic inclu-
sion, with a Young’s modulus three times stiffer
than that of the background tissue. As the com-
pression was increased, the overall height of the
phantom decreased (as can be seen from the thick-
ening black band across the bottom of the im-
ages) and the inclusion was also distorted, with an
increasing width to compensate for the decrease
in height (i.e. area was conserved). Note that
the images in Figure 2 are of four different phan-
toms, since each phantom was individually cre-
ated from a series of random ultrasound scatter-
ers. This explains why the general outline of the

inclusion changes from frame to frame, and also
illustrates the robustness of the algorithm in suc-
cessfully analysing a host of different phantom im-
ages.

(a) 0mm (b) 4mm (c) 8mm (d) 12mm

Fig. 2: Increasing levels of compression

IV Data Analysis

The image processing algorithm detailed above
was applied to all simulated images and height
measurements were taken for the inclusions in each
phantom. The error in this height measurement
was calculated as the difference between the mea-
sured value and the actual physical dimension from
the phantom parameter specifications. For the
three inclusion sizes that were inspected (10mm,
15mm, 20mm diameter), this measurement error
was plotted against the amount of deformation ap-
plied (the mean error was computed for each com-
pression level [0, 2, 4, . . . 12, 14 mm]). A linear
trend line was fitted to each of the three plots.
The results are plotted in Figure 3. This error for-
mula was then used to adjust the heights obtained
in order to compensate for any measurement error
that occurred.

hadj = hmeas − y (x) (8)

The measured compression ∆h from Equation 7
was computed for each image and plotted as a
function of the actual compression of the object
in each phantom (a separate plot was obtained for

Effect of inclusion size (Adjustment Curves)
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Fig. 3: Trend lines fitted to error data showing effect of
inclusion size on measurements
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Fig. 4: Measured vs. actual compression
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Fig. 5: Measurement variation with increasing stiffness
contrast

each of the three inclusion sizes), which produced
three scatter plots, one of which is shown in Fig-
ure 4 (15mm objects). When the original height
data were adjusted for measurement error, ∆h was
recomputed and the plots redrawn (overlaid in Fig-
ure 4).

The measured data were also investigated for
trends based on the foreground-to-background
stiffness contrast ratio in the phantoms. The data
were separated into four groups based on stiffness
contrast and a line was fitted to each data set, as
in Figure 5.

V Results

The adjustment curves plotted in Figure 3 exhibit
a high degree of similarity for the 15mm and 20mm
inclusions. The slopes for these two trend lines are
comparable (0.0188 and 0.0223) and there is a rel-
atively constant offset of approximately 0.65mm.
This offset is due to the nature of the individual
ultrasound scatterers and their appearance in the
B-mode images. The size of each scatterer is not
significant when compared to the size of the inclu-

Table 2: Trend lines fitted to measurement data
Diam. Equation R2

Orig. 10mm y = 0.4384x - 0.0670 0.4149
data 15mm y = 0.8620x - 0.0315 0.9686

20mm y = 0.8913x + 0.0213 0.9735
Adj. 10mm y = 0.9266x + 0.0863 0.8525
data 15mm y = 0.9687x + 0.0171 0.9790

20mm y = 0.9823x + 0.0737 0.9791

sions. However, this is not the case with the 10mm
images, where the detected shapes are quite small
relative to the overall image size and thus the im-
age analysis algorithm does not depict these as ac-
curately as the larger shapes. Hence, the slope of
the adjustment curve is steeper (0.0551) and the
0.65mm offset is overshadowed by the less precise
shape outlines.

Figure 4 shows the measured compression versus
actual compression for all phantoms with 15mm
diameter inclusions. Note that each point in the
graph represents a mean value from the 50 phan-
toms with similar statistical properties (each phan-
tom was reproduced 50 times to avoid any statis-
tical anomalies). Similar plots were also produced
for the 10mm and 20mm diameter objects. The
linear trend line equations are displayed in Table 2
for both the original and corrected data, along with
the corresponding R-squared value indicating how
well the line approximates the data. It is clear
from Table 2 that when the measurements were
adjusted, a marked improvement was observed in
the representation of the physical data using the
image analysis technique. The slopes of the three
lines, and hence the accuracy of the height mea-
surements, were increased from 0.4384 to 0.9266
(10mm), 0.862 to 0.9687 (15mm) and 0.8913 to
0.9823 (20mm) after compensation. This means
that the measured data can be used to estimate the
strain of the target objects to within 8% (10mm),
4% (15mm) and 2% (20mm). R-squared values
for these trend lines were 0.8525 (10mm), 0.9790
(15mm) and 0.9791 (20mm), indicating good cor-
relation. These results are equivalent to those ob-
tained in [8], but were arrived at using less com-
putationally intensive means.

From the results plotted in Figure 5 there is a
slight decrease in slope with increasing stiffness
contrast in the phantoms. The slopes vary from
0.878 (2:1) down to 0.734 (5:1), as compared to
the original value of 0.862 before the data was di-
vided into subgroups. This is because for a given
level of applied deformation, stiffer tissue masses
will compress less, increasing the measurement er-
ror.

The use of simulated images allowed many dif-
ferent phantom parameters (e.g. inclusion size,
stiffness ratio, scatterer density) and other test pa-
rameters (e.g. compression level, threshold values)



to be varied to fully evaluate the robustness of the
algorithm, and only a fraction of the results is pre-
sented here. Real data acquisition from agar and
gelatin based tissue phantoms is currently under
investigation.

VI Conclusions

In this paper a method of estimating the stiffness of
hard inclusions in soft tissue through shape anal-
ysis in an ultrasound B-mode image was investi-
gated. The feasibility of this process was evaluated
using a large scale simulation and statistical study.

A linear relationship was established between
the data measured from the images and the actual
physical dimensions of the phantoms. Although
the data contained some measurement errors, this
was easily modelled and compensated for to pro-
duce an accurate representation of the phantom
dimensions from the B-mode images. These er-
rors were found to be relatively constant and pre-
dictable for all inclusions, provided the area of the
examined shape was not too small relative to the
overall image size (as was the case with 10mm di-
ameter lesions). Trends in the ratio of foreground
to background Young’s modulus (stiffness) were
also examined. Slightly larger measurement er-
rors were observed for higher stiffness contrasts but
these were found not to have a great effect on the
overall results.

With the corrected height measurements accu-
rately depicting real height of the objects in the
compressed phantoms, the algorithm detailed in
this study can now be used to measure strain from
ultrasound B-mode images of phantoms undergo-
ing 1-D compression to within 8% of the actual
value, although this can be reduced to 4% if the
smallest objects are ignored.

References

[1] J. Ophir, I. Cespedes, H. Ponnekanti,
Y. Yadzi, and X. Li, “Elastography: a quan-
titative method for imaging the elasticity of
biological tissues,” Ultrason Imaging, vol. 13,
pp. 111–134, 1991.

[2] W. Anderson, Pathology. Mosby, 1953.

[3] M. M. Doyley, J. C. Bamber, F. Fuechsela,
and N. L. Bush, “A freehand elastographic
imaging approach for clinical breast imaging:
system development and performance evalua-
tion,” Ultrasound Med Biol, vol. 27, pp. 1347–
1357, 2001.

[4] D. M. Regner, G. K. Hesley, N. J. Hangian-
dreou, M. J. Morton, M. R. Nordland, D. D.
Meixner, T. J. Hall, M. A. Farrell, J. N.
Mandrekar, W. S. Harmsen, and J. W. Char-
boneau, “Breast lesions: evaluation with us

strain imaging - clinical experience of multiple
observers,” Radiology, vol. 238, pp. 425–437,
2006.

[5] H. Zhi, B. Ou, B.-M. Luo, X. Feng, Y.-L.
Wen, and H.-Y. Yang, “Comparison of ul-
trasound elastography, mammography, and
sonography in the diagnosis of solid breast le-
sions,” J Ultrasound Med, vol. 26, pp. 807–
815, 2007.

[6] K. Nightingale, M. Scott-Soo, M. Palmeri,
A. Congdon, K. Frinkley, and G. Trahey,
“Imaging tissue mechanical properties using
impulsive acoustic radiation force,” IEEE In-
ternational Symposium on Biomedical Imag-
ing: From Nano to Macro, vol. 1, pp. 41–44,
2004.

[7] A. R. Skovoroda, M. A. Lubinski, S. Y.
Emelianov, and M. O’Donnell, “Reconstruc-
tive elasticity imaging for large deforma-
tions,” IEEE Trans Ultrason Ferroelec Freq
Control, vol. 46, pp. 523–535, 1999.

[8] J. Bercoff, A. Criton, C. Cohen-Bacrie,
J. Souquet, M. Tanter, T. Deffieux, J. L.
Gennisson, M. Fink, V. Juhan, A. Colavolpe,
D. Amy, and A. Athanasiou, “Shearwave elas-
tography: a new real time ultrasound imaging
mode for assessing quantitatively soft tissue
viscoelasticity,” Proc IEEE Ultrason Symp,
pp. 321–324, 2008.

[9] J. A. Jensen, “Field: A program for simulat-
ing ultrasound systems,” Medical & Biological
Engineering & Computing, vol. 34, pp. 351–
353, 1996.

[10] R. C. Gonzalez, R. E. Woods, and S. L. Ed-
dins, Digital Image Processing using MAT-
LAB. Prentice Hall, 2004.

[11] M. Petrou and P. G. Sevilla, Image processing:
dealing with texture. John Wiley & Sons, Ltd.,
2006.

[12] P. K. Ghosh, “A mathematical model for
shape description using minkowski opera-
tors,” Computer Vision, Graphics, and Image
Processing, vol. 44, pp. 239–269, 1988.

[13] L. G. Shapiro and G. C. Stockman, Computer
Vision. Prentice Hall, 2001.

[14] P.-E. Danielsson, “Euclidean distance map-
ping,” Computer Graphics and Image Pro-
cessing, vol. 14, pp. 227–248, 1980.

[15] T. Acharya and A. K. Ray, Image Processing:
Principles and Applications. John Wiley &
Sons, Inc., 2005.


