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Abstract: The paper describes a reduced forward operator for solving electromagnetic scattering
problems using a volume integral equation in conjunction with a conjugate gradient fast Fourier
transform scheme. The reduction is obtained by decoupling of the interaction between the locations
in the spatial computational domain at which there is non-zero contrast and those positions at which
there is zero contrast. The decoupling is achieved by multiplication of the kernel by a diagonal
matrix whose entries reflect the presence or absence of contrast at the associated point. Analysis
supported by numerical experiments shows that the conjugate gradient algorithm applied to the
reduced system converges more rapidly than when it is applied to the original system.
1 Introduction

The propagation and scattering of acoustic, elastodynamic
or electromagnetic wave fields are described by integral
equation formulations [1]. For the electromagnetic case,
the equation formulates, in the temporal Laplace domain,
the total electric wave field ~Etot(~r), at location ~r in the
spatial computational domain D, as the sum of an incident
and a scattered electric wave field, where the scattered
wave field is described by the convolution of a Green’s
tensor function G(~r, ~r0) with contrast sources. These contrast
sources are the product of a contrast function x(~r0), defined
by changes in the medium’s electromagnetic parameters of
permittivity and conductivity, and the local total electric
wave field. The configuration shown in Fig. 1 shows that
non-zero contrast sources reside in the region D0, D,
whereas there is zero contrast in the region D00 ¼ D\D0.
For this configuration, the following integral equation
holds [1]

~Etot
ð~rÞ ¼ ~Einc

ð~rÞ þ

ð
~r0[D0

Gð~r; ~r0Þxð~r0Þ~Etot
ð~r0Þ dV ð~r0Þ8~r [ D

ð1Þ

For a numerical solution of the continuous integral equation
(1) to be obtained, the unknown total wave field is written as
a linear combination of N basis functions. Application of the
method of moments leads to the matrix equation

Ax ¼ b ð2Þ

where the vector b contains information about the known
incident wave field, and the vector x denotes the total
wave field unknowns. The dense, complex-valued matrix
A is of the form I 2 G, where I is an N � N identity
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matrix, and G contains coupling information between the
basis functions used to represent the unknown total wave
field x. For practically sized problems, A cannot be
readily inverted (or indeed explicitly stored), and we must
turn to iterative methods to solve (2). Several techniques
have been suggested in the literature for expediting the
solution of these matrix equations. Examples include the
adaptive integral equation method [2], precorrected FFT
method [3], fast multipole method [4] and, the topic of
this paper, the conjugate gradient fast Fourier transform
method (CG-FFT) [5–9]. Specifically this paper analyses
a procedure for improving the convergence of the
CG-FFT and, in doing so, extends the results presented in
[10] to the case of electromagnetic wave scattering.

We review the convergence behaviour of the CG
algorithm and identifies the CG-FFT as a practical technique
to reduce the computational requirement of each iteration.
The FFT is used to compute efficiently the convolution of
the source terms with the Green’s function. A computational
drawback of the CG-FFT method is the need to introduce
‘dummy’ unknowns in region D00 to pad out the regular
lattice structure. These dummy unknowns do not contribute
to the scattered field but do adversely affect the convergence
of the CG algorithm. We outline a simple measure by which
the influence of the dummy unknowns can be hidden from
the CG minimisation procedure without compromising the
ability to perform rapid matrix vector multiplications with
the FFT. This involves pre-multiplying both sides of (2) by
a diagonal matrix whose values reflect the presence or
absence of contrast in the associated basis function domain.
We refer to the pre-multiplied A matrix as the reduced oper-
ator. Although this technique has been suggested before in
the literature (see, for example, [7]), a rigorous analysis of
its convergence has not to date been presented. We introduce
such an analysis and show why the CG algorithm applied to
the reduced operator must lead to a more rapid convergence
than when it is applied to the full operator. Numerical results
support this analysis.

2 Convergence of CG-FFT scheme

The CG inversion scheme [11] is a method for iteratively
finding a solution for the linear system of size N � N pre-
sented in (2). The CG method cannot be applied to the
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matrix equation (2) directly, as the matrix A is not
Hermitian positive-definite. Instead, the CG algorithm is
applied to the equation

AyAx ¼ Ayb ð3Þ

where A† is the conjugate transpose of A, and, hence, A†A
is a Hermitian positive-definite matrix. This technique
(application of CG to A†A) is also known as ‘CG applied
to normal equations’ or CG-NE, for which the solution
scheme is shown in Table 1. The CG-NE algorithm starts
with an initial guess x0 and proceeds by constructing
optimum correction vectors along a series of orthogonal
search directions. The action of the algorithm at the nth
step can be equivalently thought of as minimisation of the
following error functional [12]

En ¼
XN

i¼1

jkui; r0lj2½RnðliÞ�
2

ð4Þ

where ui are the orthonormal eigenvectors of the matrix
A†A, and li are the corresponding (real-valued) eigen-
values. Rn is an nth-order polynomial whose coefficients
are determined by the correction vectors; r0 is the initial
residual

r0 ¼ Ax0 � b ð5Þ

Thus the nth iteration implicitly involves the choice of an
appropriate nth-order polynomial Rn such that the error
functional (4) is minimised. Once the iteration number n
reaches the number of independent eigenvalues of A†A, it
is possible to choose a polynomial that is zero at each li,
and the error is reduced to zero. (In practice, accumulation
of floating point roundoff errors due to finite arithmetic

Table 1: Conjugate gradient method applied to normal
equations using Polak–Ribière update directions

initial step:

d0 ¼ 0

x0 ¼ 0

r0 ¼ Ax0 2 b

for j ¼ 1, 2, . . .

bj ¼ kA†rj21, A†rj21 2 A†rj22l/kA†rj22k
2

dj ¼ 2A†rj21þ bjdj21

aj ¼ 2kAdj, rj21l/kAdjk
2

xj ¼ xj21þ ajdj

rj ¼ Axj 2 b

Fig. 1 Spatial volume D contains spatial region D0, in which
contrast function x = 0, and spatial region D0 0, in which contrast
function x ¼ 0
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computer precision causes the residual to lose its accuracy
gradually, and cancellation error causes the vectors to lose
their A-orthogonality [13]. As a consequence, an error of
exactly zero is never actually attained.) In practice, the
algorithm is terminated after far fewer steps, once an accep-
table threshold level of accuracy is achieved. How rapidly
this threshold is reached depends on how spread out the
eigenvalues of A†A are. The CG will converge more
rapidly when applied to linear systems with clustered eigen-
values as, in that case, it is possible to find a polynomial of
lower order that possesses zeros near all of the independent
eigenvalues, thus yielding a low value of En. Conversely, it
is more difficult to force a low-order polynomial through a
widely separated set of eigenvalues such that the poly-
nomial is almost zero at all of them.

Let the eigenvalues of A†A be ordered such that

l1ðA
y
AÞ � l2ðA

y
AÞ � � � � � lN ðA

y
AÞ ð6Þ

The rate at which the CG converges thus depends on the
ratio R, which measures the eigenvalue spread of A†A,
that is R is defined by

R ¼
l1ðA

y
AÞ

lN ðA
yAÞ

ð7Þ

Note that the eigenvalues of A†A are related to the singular
values of A by

siðAÞ ¼ ½liðA
yAÞ�1=2 for i ¼ 1; . . . ;N ð8Þ

where si(A) are the singular values of A and are ordered as
follows

s1ðAÞ � s2ðAÞ � � � � � sN ðAÞ ð9Þ

Consequently, it is trivial to express R as a function of si(A)

R ¼
s2

1ðAÞ

s2
N ðAÞ

ð10Þ

R is thus the square of the condition number of A.
The condition number of A thus determines how many

iterative steps are necessary before the CG algorithm will
converge. Each iterative step involves a matrix-vector mul-
tiplication and thus involves O(N2) computations. The
volume integral equation lends itself to solution with a
CG-FFT method where each iterative step involves
O(N log2 N) computations. Application of the CG-FFT
method necessitates the uniform discretisation of a recti-
linear volume enclosing the scatterers. Under these con-
ditions, the matrix G can be decomposed into a diagonal
matrix containing contrast information and a matrix with
a cyclical structure containing Green’s function infor-
mation. This cyclical structure facilitates its efficient pre-
multiplication of an arbitrary vector using the FFT. The
use of the FFT to efficiently compute the convolutions
inherent in the integral equation formulation reduces the
computation time but necessitates the introduction of
dummy unknowns at locations where there is no contrast.
These dummy unknowns produce no scattered field and
have no influence on the value of the other unknowns.
They are introduced merely to support a uniform lattice
structure that allows the use of the FFT. The CG-FFT
makes no differentiation between these dummy unknowns
and the unknowns lying within the scatterers themselves.
This has an adverse effect on the convergence of the
CG-FFT, as the CG minimisation procedure must solve
for both unknowns alike. The following sections show
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007



how the dummy unknowns can be effectively hidden from
the CG minimisation procedure, so that faster convergence
can be guaranteed without compromising the ability for the
FFT to be used to compute the convolutions.

3 Reduced forward operator

Let the set N0 represent the indices of the N0 basis functions
whose domains possess non-zero contrast. The complemen-
tary set N00 represents the index of the N00 ¼ N 2 N0 basis
functions whose domains possess no contrast. The presence
or absence of contrast in a subdomain is manifested in the
structure of A. Specifically, the columns Amn 0 0 for each
n00 [ N00 have all zero entries except for the diagonal
entry, which is equal to 1. Equation (2) can thus be
written as

A11 � � � � � � 0 � � � � � � A1N

..

. . .
. ..

. ..
.

..

.
0 ..

.

An001 � � � An00ðn00�1Þ 1 An00ðn00þ1Þ � � � An00N

..

.
0 ..

.

..

. ..
. . .

. ..
.

AN1 � � � � � � 0 � � � � � � ANN

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

x1

..

.

..

.

xn00

..

.

..

.

xN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

b1

..

.

..

.

bn00

..

.

..

.

bN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð11Þ

where we have made explicit the structure of the n00th
column and row for some n00 [ N00. Similarly structured
rows and columns will be present in the matrix for all
other n [ N00. Hence, the unknowns xn 0 0 for n 00[ N00 do
not affect the values of the unknowns at any other location
in space. It is therefore desirable to remove their influence
from the CG minimisation procedure. The CG process
should strive to compute the unknowns only at locations
where contrast is present. These values can subsequently
be used to compute the fields in D00, as desired. We
propose removing the influence of the zero-contrast
unknowns by pre-multiplying both sides of (2) with a diag-
onal matrix ~I whose diagonal elements reflect the presence
or absence of contrast, that is

~Imm ¼
1 8 fm [ N0g

0 8 fm [ N00g

�
ð12Þ

Note that this pre-multiplication does not compromise the
ability for the FFT to be used for rapid matrix-vector mul-
tiplication as it merely introduces a trivial extra multipli-
cation by a diagonal matrix at each iteration.
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Premultiplication by ~I results in a matrix equation with
increased sparsity

A11 � � � � � � 0 � � � � � � A1N

..

. . .
. ..

. ..
.

..

.
0 ..

.

0 � � � 0 0 0 � � � 0

..

.
0 ..

.

..

. ..
. . .

. ..
.

AN1 � � � � � � 0 � � � � � � ANN

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

x1

..

.

..

.

xn00

..

.

..

.

xN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

b1

..

.

..

.

0

..

.

..

.

bN

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð13Þ

where we have again made explicit the structure of the n00th
column and row for some n00 [ N00. Again, we note that
similarly structured rows and columns will be present in
the matrix for all n [ N00. We can write this reduced
matrix equation as

~A~x ¼ ~b ð14Þ

with ~A ¼ ~IA and ~b ¼ ~Ib. Although the condition number of
~A is technically infinite, we note that x̃n ¼ xn, 8n[ N0; that
is, pre-multiplication by the ~I matrix will not affect the sol-
ution at the locations where contrast exists. The reason for
this is that the equations involving unknowns at locations
where no contrast is present are effectively ignored, as the
CG algorithm will not generate search directions in the
null space that the pre-multiplication by ~I introduces into
~A. The infinite condition number merely reflects the fact
that the CG scheme will be unable to update the initial
values chosen for xi, i [ N00. We stress that this does not
present a problem, as any starting value for components
xi, i [ N00 trivially satisfy the relevant row equation in
(13) and as such will not contribute to the error.

Although it seems reasonable to remove the influence of
these unknowns from the CG minimisation procedure, it is
not fully clear what effect such a removal will have on its
convergence. The CG procedure applied to (13) should con-
verge exactly in at most N0 steps, where N0 is the number of
non-zero eigenvalues of ~A and is less than the at most N
steps required for an exact CG solution of (11). However,
in practice, we do not seek an exact solution, preferring to
terminate the procedure once an acceptable threshold
error has been reached. It is not obvious that the conver-
gence of the CG applied to (13) should be guaranteed to
be better at each step of the iterative process than that of
the CG applied to (11) and thus that an acceptable threshold
will be reached more quickly by use of the reduced operator.
Numerical results presented in [10] suggest that this indeed
is the case, but no analytic proof was offered. The following
section presents such an analysis of the convergence prop-
erties of the reduced operator and shows that the CG will
indeed converge faster at each step.
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4 Convergence analysis for reduced
forward operator

For the purposes of analysing the convergence properties of
the reduced operator, we remove the zero rows and zero
columns of the matrix equation (13). The equation can be
effectively reduced to one involving a matrix Â of size
N 0 � N0, given by

Â ¼

Â11 � � � ÂN 01

..

. . .
. ..

.

Â1N 0 � � � ÂN 0N 0

0
B@

1
CA ð15Þ

Application of the same reductions to ~x and ~b results in the
vectors x̂ and b̂ with the corresponding matrix equation

Âx̂ ¼ b̂ ð16Þ

The analysis of the behaviour of the CG algorithm as
applied to (13) is identical to its analysis when applied to
(16), and we will use the reduced operator of (16) for our
convergence analysis. We stress that (13) is preferred in
practical implementation as it implicitly retains the
uniform lattice structure that permits the retention of
the FFT for matrix-vector multiplications. Solving (16)
exactly with a CG will only require at most N0 iterations,
with N0 , N. What is not clear is how quickly the algorithm
will converge at each step. If we apply the ideas of Section
2, we know that this depends on the ratio R̂ given by

R̂ ¼
s2

1ðÂÞ

s2
N 0 ðÂÞ

ð17Þ

Note that the denominator equals sN 0
2 (Â), as the matrix of

interest is now of size N0 � N0, with N0 , N. Let R be the
square of the condition number of the original system, as
given by (10). Next, we will prove that R � R̂ and thus
that the reduced matrix has a more clustered set of eigen-
values and that its use leads to a more rapid convergence
of the CG algorithm.

It is clear that matrix Â is a subset of the N 0 � N-dimen-
sional matrix B, where B is

B ¼

Â11 � � � Â1N 0 0 � � � 0

..

. . .
. ..

. ..
. ..

.

ÂN 01 � � � ÂN 0N 0 0 � � � 0

0
B@

1
CA ð18Þ

Therefore the singular values of Â are the same as the
singular values of B (Lemma 4 in [14]), and, hence

s1ðBÞ ¼ s1ðÂÞ ð19Þ

sN 0 ðBÞ ¼ sN 0 ðÂÞ ð20Þ

As B is a subset of A, obtained by the removal of (N 2 N 0)
rows and shifting of the columns with only zero entries
towards the end of the matrix (this shifting of the columns
has no effect on the singular values of A), the following is
true (Lemma 3 in [14]):

s1ðAÞ � s1ðBÞ ¼ s1ðÂÞ ð21Þ

sN ðAÞ � sN 0 ðBÞ ¼ sN 0 ðÂÞ ð22Þ

Therefore the following holds for the ratios R and R̂:

R ¼
s2

1ðAÞ

s2
N ðAÞ

�
s2

1ðÂÞ

s2
N 0 ðÂÞ

¼ R̂ ð23Þ
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which shows that the reduced matrix has a more compact
eigenvalue spread and thus will lead to a more rapid conver-
gence when used in a CG scheme.

5 Results

Testing of the presented reduced forward operator
was carried out for a spatial domain of size
31

2
l � 31

2
l � (1/2)l, with cubic spatial elements of

volume (l/4)3, with l the wavelength of the 1.0 GHz
monochromatic wave field. The spatial domain with
medium parameters similar to those of breast tissue encloses
one or three tumours with dimensions l � l � (1/2)l; see
Fig. 2. The relative permittivity er of the background
medium equals er

bg ¼ 18.23 and that of the object
er

obj ¼ 89, whereas the conductivity equals sbg ¼ 0.068
S m21 and sobj ¼ 1.3 S m21, respectively.

For both configurations, the matrices A and Â have been
computed. In Figs. 3a and c, the presence of non-zero entries
in A is indicated by black points in the image. It clearly
shows the sparsity S of the A matrix, where S is defined as

S ¼ 100� 1�
Nnon-zero

N 2

� �
ð24Þ

Hence, in the presence of one object, S ¼ 96%, and, for three
objects, S ¼ 90%. Figs. 3b and d show jÂj for the same
systems, obtained by removal of the rows/columns associ-
ated with the dummy unknowns. The condition number of
all four matrices shown in Figs. 3a–d equals 1.39 � 108,
31.07, 4.4 � 108 and 36.97, respectively. We note the signifi-
cant reduction in condition number of the reduced system Â
when compared with the unreduced system A. This is
reflected in the greatly improved convergence rates observed
and described later in this section. For this configuration, both
the full and the reduced forward problems were solved with
the CG scheme shown in Table 1, with Polak–Ribière update
directions. Note that the gradient divergence present in the
Greens operator is computed numerically by the mid-point
rule. Consequently, the values of the vector potential, that
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λ
λ
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2

2.5

3

Fig. 2 Cross-sections of spatial domain D enclosing tumour(s)
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is the convolution of the Greens scalar function with the con-
trast sources, at the edge of the computational domain (as
opposed to the edge of the scatterer) are only used to
compute the gradient divergence and, hence, the electric
wave field at points just inside the boundary. Consequently,
to compute the electric field in 14 � 14 � 2 points, we com-
puted the vector potential in 16 � 16 � 4 points.

To illustrate the improvement in the convergence rate, we
computed the normalised error Ei after each iteration,

Ei ¼
kAxi � bk2

kbk2

ð25Þ

where xi is the approximate solution at the ith iteration step,
and k.k2 denotes the L2-norm. In Fig. 4a, this error func-
tional is plotted as a function of the number of iterations,
where the solid line refers to a functional based on
Ax ¼ b with only one object present, and the broken line
is used when three objects are present, whereas the dotted
line refers to the functional based on Âx̂ ¼ b̂, with only
one object present, and the dashed-dotted line is the case
where three objects are present. These results show that a
clear reduction in the number of iterations needed is
obtained by employment of the knowledge about the
locations of zero contrast to form a reduced operator. In
the presence of three objects, only a tenth of the number
of iterations is required to obtain the same accuracy. Note
also the effect of the finite numerical precision of the com-
puter. This is indicated by the fact that the error functionals
flatten out after a reduction of 16 times the order of magni-
tude and do not become exactly zero.

The same limitation in numerical precision is observed in
Fig. 4b. Here, the same error functionals are shown, but now
as a function of the number of iterations divided by the
number of unknowns, that is i/N and i/N 0, respectively.
Based on the knowledge that the number of iterations
required to solve the problem exactly equals the number of
independent eigenvalues, we would expect that all lines
would cross the line Ei ’ 10216 at i/N ’ 1. This is clearly
not the case for the situation where the full system with

Fig. 3 Presence of non-zero elements in matrix A and absolute
values of matrix Â, for one and three tumours

a Matrix A for one tumour
b Matrix Â for one tumour
c Matrix A for three tumours
d Matrix Â for three tumours
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three objects is solved, where the poor condition number
has exacerbated the problem of finite precision and led to
extremely slow convergence. The reduced system for the
three-object problem shows no such problem, however.

Finally, the error functionals shown in Fig. 4c are defined as

E0i ¼
jjAxi � bjj2;x

jjbjj2;x
ð26Þ

with kxk2,x being the L2-norm of a vector x, where locations
with zero contrast are excluded from the spatial domain
and, hence, the norm. Comparison of these error functionals
with the error functionals presented in Fig. 4a, shows that
both sets of error functionals are almost identical. Hence,
the largest contribution to the error functional originates
from the fields at the locations of non-zero contrast.

6 Conclusions

A reduced operator has been presented that significantly
reduces the number of steps needed for acceptable conver-
gence of the CG-FFT when applied to electromagnetic scat-
tering problems. The reduced operator hides the influence of
the unknowns located at points of zero contrast from the CG
minimisation procedure, thereby lowering the condition
number of the system and greatly improving the conver-
gence rate. Numerical simulations support the analytical
findings.

Fig. 4 Error functionals Ei and E0i

—— Functionals based on Ax ¼ b with one object present
– – – Functionals based on Ax ¼ b with three objects present
. . . . . . Functionals based on Âx̂ ¼ b̂ with one object present
- . - . - Functionals based on Âx̂ ¼ b̂ with three objects present
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