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Abstract —

This paper describes the development of a reduced

forward operator for solving acoustic scattering problems that arise
in ultrasonic imaging applications. The reduction, inspired by the
contrast source inversion technique, is obtained by decoupling the
interaction between locations in the computational domain at which
contrast is present and those positions at which there is a zero con-
trast. The decoupling is achieved by multiplication by a diagonal
matrix whose entries reflect the presence or absence of contrast at

the associated point.

Numerical results confirm that the reduced

operator produces convergent results in less iterations.

I INTRODUCTION

Wave scattering is a fundamental physical process
of central importance to a large number of engi-
neering disciplines, such as wireless communica-
tions networks, ground penetrating radar, seismic
and ultrasonic imaging. Our application area is
the use of modeling techniques to support the de-
velopment of novel clinical ultrasonic imaging tech-
niques and to model hyperthermia cancer treat-
ment by using focussed ultrasound. Practical nu-
merical models of wave scattering have histori-
cally required the introduction of judiciously cho-
sen simplifying approximations to keep the com-
putational burden reasonable while producing ac-
ceptable results. Included in this class are asymp-
totic, or ray-based, models. These are compu-
tationally tractable but are strictly valid only in
the limit of vanishing wavelength and consequently
suffer from a variety of related shortcomings. In
contrast full-wave models such as those based on
the integral equation or differential equation for-
mulation offer numerically exact solutions. A spe-
cific advantage of the integral equation formulation
is the fact that only the scatterer needs to be dis-
cretised. This discretisation can take place on the
scatterer surface or within its volume depending on
the level of material inhomogeneity the scatterer
displays. The use of a suitable Green’s function
couples the unknown fields together in a compact
fashion and removes the need for special treatment
of the edges of the computational domain, such as

the absorbing boundary conditions used in finite
difference techniques [1]. The considerable disad-
vantage of the integral equation formulation is the
computational complexity of their solution. Dis-
cretising the integral equation results in a linear
system involving N unknowns. The matrix is com-
plex valued and dense, with no zero entries. An
iterative solution, such as the method of conjugate
gradients (CG), requires O(N?) computations per
iterative step. There is thus a considerable com-
putational advantage to be had by reducing the
number of steps required before satisfactory con-
vergence is reached. This paper presents a novel
method for improving the convergence of a conju-
gate gradient iterative solution of the problem of
acoustic wave scattering from an inhomogeneous
scatterer whose location and composition are spec-
ified. Related, but distinct work, on the inverse
problem (where the material composition of the
scatterer is not known and must be inferred from
measurements of the fields scattered from it at dis-
tinct points) is also presented at this conference

2).

The paper is arranged as follows. Section (II)
introduces the integral equation formulation for
the acoustic scattering case. It also introduces
the novel technique for expediting the iterative so-
lution. This involves pre-multiplying both sides
of the linear system by a diagonal matrix whose
diagonal entries reflect the presence, or lack, of
material contrast within the associated basis sub-



domain. Section (III) elaborates on the compu-
tational method while section (IV) presents re-
sults verifying the method’s improved convergence
properties when contrasted with a standard CG
method.

II FORMULATION OF THE FORWARD PROBLEM

We use the integral equation formulation to de-
scribe the scattering problem. This formulation
exactly accounts for all wave effects such as reflec-
tion, diffraction, refraction and scattering. The
formulation is in the temporal Laplace domain
with Laplace parameter 5. Frequency domain re-
sults are obtained by taking the limit § — —iw,
with 2 = —1 and w the temporal angular fre-
quency, where the symbol 7" is used to denote
temporal dependency. The vectors z,, or x, de-
note positions in the spatial domain R®, hence
{m,n}=1,2or 3.

Combining reciprocity[3] with the acoustic wave
field equations results in an expression for the to-
tal pressure wave field p*°*(z,,) and the total ve-
locity wave field 9{°%(x,,) for {i,j} = 1,2 or 3 in
the presence of acoustic contrasts, which reads

ﬁtot(xm) ZﬁinC(Im) +ﬁSCt(Im) , (1)
B () = T () + 01 (). 2)
where p'"(z,,) and 91"(z,,) are the incident pres-

sure and velocity wave fields and where p5¢t(z,,)
and 9°*(x,,,) are the scattered pressure and veloc-

ity wave fields. These scattered wave fields equal

( )A7 (2n)p" ()
+ fo(xm,xn)A(f(xn)ﬁ;Ot(xn) ) (3)

05 () = qu(wma ) A7) ()P (21)
+ G (@, ) AL ()" () (4)

where the contrast functions Afj(z,) and A (z,,)
are defined by differences between the compress-
ibility x and volume density p of the background
medium (bg) and the object medium (obj). Specif-
ically

—&Pi(z)], (5)
Al(xn) = 88p(xn) = 5 [p" — p™ ()] . (6)

The Green’s tensor functions shown in equa-

tions (3) and (4) are defined as follows
gqu(xm, Tn){(2n) = Cbgé(xma zn) * 4(zn),  (7)
G (@) fi(wn) = =0, | Glam, wn) % filwn)] |
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with 0; the spatial derivative in the x; direction,
0;,; Kronecker’s delta function, 6(z,, — x,) the im-
pulse response function, G (Zm, T ) the scalar form
of the Green’s function, ¢(x,) a volume density of
injection rate source and fj(xn) a volume density
of force. Note that, f(2m,zn) * g(x,) refers to
a spatial convolution of the functions f(z,) and
g(zy) over the domain I enclosing the contrasts.
Therefore, equations (1) to (10) constitute integral
equations describing the scattering mechanism.

The equations presented above are integral
equations describing the behaviour of continuous
unknown fields. In order to numerically solve the
problem we must impose a suitable discretisation.
This is done by dividing the continuous spatial do-
main, D, into M subdomains, each with associ-
ated basis functions describing the unknown field
quantities. In our work we use simple subdomain
pulse functions described on a regular cubic grid
which encloses the scatterers. The use of these ba-
sis functions implicitly assumes the wave field to
be constant over each subdomain, which must nec-
essarily be small with respect to the wavelength.
The imposition of a regular grid is important in
that it allows the use of fast Fourier transforms to
expedite the computation of fields during the sub-
sequent iterative solution. However, it also means
that basis functions are placed at locations where
there is no contrast present. Point-matching the
fields at points within each subdomain results in a
discretised linear system which we describe using
tensor notation as

pinc _ ptot . ZquAnptot o prACVtOt , (11)
Vinc — ybot _ Z—leqAnptot . GUfA<VtOt ’ (12)
where the constant Z2 = kP&/pb® is introduced

to normalize the pressure wave field such that
the units of the M-dimensional vector p and 3M-
dimensional vector v are identical. Various meth-
ods exist to solve this linear system and good re-
sults are obtained with the conjugate gradient it-
erative method[4]. In this scheme, a normalized



error functional Err, is minimized iteratively. Af-
ter n iterations, the error functional Err, reads

2
_ el
Err, = ||ui“C||2 , (13)
where the vectors u™® and r are given by
: pinc P
ute = ( Vinc ’ fn = r}Z . (14)

The residual r,, is based on the solutions obtained
in the n-th iteration step for pt* tot

wvand v;t. Specif-
ically
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Note that, [|ul|* denotes the Ly-norm of a vector u.
This norm is defined via the inner product (u,u)
which involves a summation of all the elements of
the vector u in the spatial domain I, hence

Jull® = (u,u) = > (pp" +w")

where a * is used to show that the complex conju-
gate of the vector is taken.

As a consequence of the definition of the forward
operator given in equations (11) and (12) and the
norm of a vector as shown in equation (17) ap-
proximate values for the wave fields are computed
everywhere in the spatial domain . These ap-
proximate values are obtained by updating the to-
tal wave fields during each iteration step, where
the update directions are obtained by applying the
adjoint of the forward operator on the residuals.
However, from the same set of equations it is ob-
served that the only contribution to the scattered
wave fields comes from those positions where there
is a non-zero contrast. Fields at points where there
is a zero contrast are unknown but do not affect
the computation of fields at positions where there
is non-zero contrast. The new method exploits
this by explicitly decoupling the interaction be-
tween fields at positions with zero contrasts and
those at positions with non-zero contrasts. This is
achieved by introducing a reduced form of the for-
ward operator shown in equations (11) and (12).
This reduced forward operator reads

(17)

'i'ppinc — Tp [ptot _ ZquAnptot _ prACVtOt] ,
(18)
'i'vvinc — Tﬂ [Vtot o Z*leqAnptot o GvaCVtOt} ,
(19)

where | is a diagonal matrix whose diagonal ele-
ments are one or zero depending on the presence
or absence of contrast at the associated position in

Table 1: The conjugate gradient inversion scheme.
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the computational domain. Specifically the diago-
nal entry corresponding to location (z,,) is given
by

=1 for An(z,,) # 0 or Al(xy,) #0,

=0 for An(zy) =0 and Al(zy,) =0.
(20)

[ (Tm)

Note that the limiting situation where the ”re-
duced” identity matrix 1 is equal to the identity
matrix | corresponds to the case where there is
contrast present everywhere in the spatial domain
D. In this case, the original form of the forward
operator is obtained again and no computational
savings are achieved.

IIT COMPUTATIONAL METHOD

In order to test the reduced form of the forward
operator, the conjugate gradient scheme shown in
Table 1 was applied. In this scheme, the tensor
G' is the adjoint of the forward operator based on
equations (11) and (12). In addition, a”~on top of a
tensor is used to denote that it is obtained via the
reduced form. Hence, it contains only non-zero en-
tries at positions corresponding to locations with
non-zero contrast. Note that the table shows the
computation of two error functionals; one based on
the reduced and one based on the complete form.
The latter one is used to compare the results ob-
tained with both methods.

IV SIMULATION RESULTS AND DISCUSSION

The novel numerical method has been tested for
a spatial domain with dimensions 4\ x 4\ x 2},
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Fig. 1: The contrast function.

with A = 20 mm the wavelength of a single
frequency probing signal. The volume of each
subdomain equals 2.5 x 2.5 x 2.5 mm3. The
medium parameters of the background medium
correspond to liver tissue, k" = 0.36648 (G Pa)~!
and p"® = 1056.6 kg/m?, while the three objects
have medium parameters similar to fat, x°P =
0.4819 (GPa)~! and p°® = 950.0 kg/m>[5], [6],
[7]. The iterative process was considered to have
converged once the normalized error functional
Err became smaller than 1076,

In Fig. 2 the error functionals Err, (top) and
Err (bottom) are shown for the contrast function
shown in Fig. 1. The solid lines refer to the stan-
dard situation, given by T = I, while the dashed
line refers to situation where the reduced form is
used. Fig. 3 shows results where the same compu-
tations have been repeated, but now for the situ-
ation where there is either zero contrast in com-
pressibility (Ax = 0) or zero contrast in density
(Ap = 0). Finally, we investigated the effect if
there are both contrasts in compressibility and
density but not at the same location (see Fig. 4).
The results for this case are shown in Fig. 5.

In all cases the results show that applying the re-
duced form of the forward operator clearly results
in a decrease in the number of iterations needed to
achieve a desired level of convergence.
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Fig. 2: The error functionals Err (top) and Err (bottom)

for the contrast function shown in Fig. 1. The dashed line

refers to the situation where reduced form is applied and
solid line where it is not applied. line
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Fig. 3: The error functionals Err (top) and Err (bottom)
in the case where there is either a contrast in the
compressibility or in the density.
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Fig. 4: The contrast function. The location of a contrast
in compressibility does not coincide with the location of a
contrast in density.
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Fig. 5: The error functionals Err (top) and Err (bottom)
for the contrast function shown in Fig. 4.

V  CONCLUSION

This paper has introduced a reduced forward op-
erator for solving the acoustic scattering problems
that arise in ultrasonic imaging applications. The
reduction is obtained by decoupling the interaction
between locations in the computational domain at
which contrast is present and those positions at
which there is a zero contrast. The decoupling
is achieved by multiplication by a diagonal ma-
trix whose entries reflect the presence or absence
of contrast at the associated point. Numerical re-
sults confirm that the reduced operator produces
convergent results in less iterations.

A major advantage of this method as opposed
to physically reducing the computational spatial
domain is that the same iterative scheme remains
valid, independent of the number of scatterers.
Hence, we retain the ability to use FFT’s to ef-
ficiently compute the convolution.
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