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Abstract -- A through-transmission fan-beam ultrasonic tomography 
system has been constructed to image solid objects and temperature 
fields in air. Image reconstruction has been achieved using a filtered 
backprojection algorithm combined with a re-bin routine and a 
difference technique. Aliasing artifacts, which arise in the reconstructed 
images due to projection undersampling, will be investigated and 
optimum sampling criteria for the minimisation of aliasing artifacts will 
be suggested. 

 
 

I INTRODUCTION 

Computerised tomography is a method of 
reconstructing object images from projection data 
obtained by isonifying the object from many 
directions in the plane of interest [1]. The 
reconstructed image is a map of spatial variations in 
the acoustic properties of the object such as 
attenuation and slowness. These quantities can be 
directly related to such properties as temperature and 
density. 

Images in computerised tomography may be 
reconstructed using transmission [2], diffraction [3] 
or reflection algorithms [4], depending upon the 
effect that the image field has upon the isonifying 
beam. Transmission tomography relies on the fact 
that ultrasound can pass through the area to be 
imaged without deflection. The application of 
transmission tomography principles in ultrasound has 
often proved inadequate due to the fact that the 
wavelength of the ultrasound is sometimes 
comparable to the size of the object being imaged, 
thus causing diffraction of the ultrasound beam. 
Transmission tomography algorithms, which account 
for such inhomogeneties have been reported by 
Mueller et al [5].   

Images may be reconstructed in 
transmission tomography applications by using 
iterative or Fourier reconstruction techniques.  
Examples of iterative techniques such as ART and 
SIRT have been reported by Gordon et al [6] and 
Gilbert [7] respectively. Fourier methods such as 

Fourier inversion [8] and Filtered back projection [9] 
have been reported by Lewitt and Stark et al 
respectively. 

In most process applications there are large  
variations in object homogeneity, which leads to 
invalid analysis when transmission tomography is 
applied, thus reflection or diffraction tomography 
methods must generally be employed. Transmission 
tomographic imaging in air [10,11] has been made 
possible in recent years due to improvements in 
electrostatic capacitance transducer manufacture and 
characterisation. These broadband transducers can 
generate and receive ultrasonic waves in air over a 
large frequency range and are ideal for accurate 
measurement of time of flight and frequency content.  

A useful descriptor of the interaction of 
ultrasound with a material is its specific acoustic 
impedance, Z: 

Z = ρc      (1) 
where ρ is the density of the material through which 
the ultrasound passes and c is the ultrasonic velocity 
through the material [12]. When considering the 
behaviour of an ultrasonic wavefront normal at an 
interface the power reflection coefficient, Pr is given 
in terms of the incident (pi) and reflected (pr) sound 
pressures [12]:  
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where Z1 and Z2 are the acoustic impedances of the 
two materials at the interface. It can therefore be 
shown that Pr for ultrasound passing from air at 
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300 K to air at 600 K is 0.111, and Pr for ultrasound 
passing from air at 300 K to aluminium is 0.999. It is 
clear that the greater the difference in impedance at 
the interface, the greater will be the amount of energy 
reflected, which is the case when a solid object is 
placed in an image field in air. Conversely, if the 
impedances are similar, for example regions of air at 
different temperatures, most of the energy is 
transmitted. 

Transmission tomography of temperature 
fields using electrostatic transducers can thus be 
carried out effectively but when an object is placed in 
the image field, transmission projections will be 
incomplete due to reflection, and some of the 
ultrasound rays will be occluded. A modified version 
of the through transmission algorithm, which inserts 
artificial arrival times in place of the occluded waves 
will be implemented. 
 

II THEORY 

The local speed of sound is related to the 
propagation time tTR, through a medium by the 
following relationship: 

∫=
R

T

r

r r
TR c

drt            (3) 

where cr is the speed of sound at any position r along 
a sound ray path e.g. T1 to R1 (Figure 1). This 
integrand may also be referred to as the 
slowness [13].  

 
 

Figure 1: Fan Beam Geometry 
 
The local speed of sound is also related to the 
temperature as follows: 
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where T is the temperature of the air in Kelvin [14]. It 
has been shown that a reconstructed image of the 
spatial variation in slowness within the scanned area 
will indicate the presence of solid objects in air or 
changes in air temperature [11]. 

Using the capacitance electrostatic 
transducers it is possible to obtain through 
transmission data for the image field and images may 

be reconstructed using a modification of the filtered 
back projection for transmission tomography. 

Figure 1 shows an image plane, which is 
uniformly interrogated from various viewpoints using 
ultrasound. The propagation time for a straight 
ultrasound ray (e.g. T1 to R1) in a projection at an 
angle θ to the (x, y) Cartesian axis equals a line 
integral of the slowness variation along its path, this 
may be represented as follows: 

                                             (5) dt)t,s(f)s(p ∫
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where the function pθ (s) represents the propagation 
times for an interrogation at an angle θ to the (x, y) 
Cartesian axis. The function fθ(s,t) represents the 
slowness function along the ray path in the rotated 
(s,t) coordinates. The Fourier transform of this 
projection may be defined as: 
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and inserting (5) into (6) gives: 
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The two dimensional transform of the 
slowness may be represented as follows: 
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and when T = 0:  
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Thus a one-dimensional Fourier transform of a 
projection at an angle θ is equal to the two-
dimensional Fourier transform of the actual slowness 
function through the centre of the object at the same 
angle θ.  When the non-rotated coordinates in the 
Fourier domain (X,Y) are considered it is clear that an 
inverse Fourier transform will provide an estimation 
of  f(x,y): 

dxdye)Y,X(F)y,x(f )yYxX(j∫
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However the function F(X,Y) is in polar coordinates 
in the Fourier domain and before an inverse Fourier 
transform can be attempted, the discrete data must be 
interpolated into Cartesian coordinates. This 
procedure can lead to large errors due to the fact that 
as the value of S increases the distance between 
sampling points becomes greater. 

This problem may be overcome by 
converting the inverse Fourier transform expression 
into polar coordinates: 

x = rcosφ  , y = rsinφ                  (11) 
and: 

X = Rcosθ  , Y = Rsinθ                   (12) 

 
 



Rewriting (10) provides the following relationship: 
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 (13) 
|R| arises from the conversion of the differential area 
dXdY to polar coordinates as:  

dXdY = R dRdθ                 (14) 
and: 

cosθ cosφ + sinθ sinφ = cos(θ -φ)      (15) 
 
Now from (9): 
 

)sinR,cosR(F)T,S(F)S(P θθ== θθ       (16) 
therefore: 
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(17) 
The product Pθ⏐R⏐ in the Fourier domain 

may be represented by a convolution in the space 
domain, which may be represented as follows: 
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where k(r) is known as a kernel function, which has a 
Fourier transform R . Equation (17) may be rewritten 
as: 

dre)R(Gd                                 

)sinry,cosrx(f

)cos(rRj∫ ∫
π ∞

∞−

φ−θπ
θθ=

φ=φ=

0

2  

where:  RPG θθ =  

( )[ θφ−θ= ∫
π

θ dcosrg                                 
0

]           (19) 

This represents a backprojection of all the convoluted 
projections gθ[rcos (θ – φ )] associated with all rays 
passing through a point (x,y). 

If the convolution is performed in the space 
domain the algorithm may be termed convolution 
back projection and if the convolution is carried out 
in the Fourier domain the algorithm is known as the 
filtered back projection. 

Practical applications using the above 
algorithm undoubtedly obtain discrete data therefore 
it is necessary to modify the algorithm to reconstruct 
images of slowness using discrete data. Assuming 
that m equiangular projections are sampled at n even 
intervals in steps of ∆s, the frequency content of the 
convolutions will be bandlimited, with a bandwidth, 
B, determined according to the Nyquist sampling 
theorem; 
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in order to reduce the effects of aliasing it is 
necessary to ensure that: 
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where so is the highest spatial frequency of interest in 
the object. The Fourier representation of the ideal 
Kernel function K(R) = |R| will tend to emphasize the 
higher frequencies, where the signal to noise ratio is 
worst. Applying a window function W(R) reduces the 
effect of truncating the Kernel to zero above the cut 
off frequency, B. Zero padding to a length N such 
that N is a power of two and reduces the 
problems caused by linear convolution. Taking all of 
these factors into account the following discrete data 
version of the filtered back projection algorithm may 
be presented: 
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where G’θ, K’θ and g’θ are discrete representations of  
Gθ, Kθ and gθ,  respectively and l represents the effect 
of zero padding the data. 
 

III SAMPLING GEOMETRY 
A typical fan-beam sampling geometry 

employed is shown schematically in Figure 1. A 
source transducer T is positioned on the perimeter of 
a circular area of interest and a receiver R is scanned 
through a number of regularly spaced positions 
opposite the source to produce a fan shaped series of 
ultrasonic waves known as a projection. This 
procedure is then repeated at different source 
positions T1, T2, etc until a series of projections is 
obtained. 

 
Figure 2: Tomographic Rig. 

 
 



Once the fan beam projections have been obtained, 
the rays must be re-binned in order to produce a data 
set of equally spaced parallel rays at each projection 
angle. The re-bin routine firstly rescales all rays to an 
equal length using the first ray in each fan beam 
projection as a reference. It is assumed that the first 
ray in each projection passes through the extremity of 
the scan area and is not influenced by any 
disturbances within the scan area. It may thus be used 
to calculate a value ofbackground reference velocity. 
All parallel rays at each projection angle are 
subsequently extracted and as they are unequally 
spaced an interpolation routine is implemented in 
order to create a data set of equally spaced parallel 
rays. 

IV EXPERIMENTAL SETUP 
 
In order to create the fan beam isonification 

of the image plane as shown in Figure 1 it is 
necessary to employ a divergent ultrasonic source    
receiver. The experimental configuration is shown 
schematically in Figure 2. Ultrasound was generated 
and received by a pair of prototype electrostatic 

transducers with convex polished metal backplates, a 
10mm radius of curvature and 5 µm metalized Mylar 
film. These devices operated at a frequency of 
400 kHz with a –6 dB bandwidth of 300 kHz, whose 
basic operation has been detailed elsewhere [15].  

The transmitters were driven by a 
Panametrics Pulser/Receiver (Model 500PR) 
providing a -250V pulse with a pulse energy of up to 
19.4 µJ. A Cooknell CA6/C charge amplifier with a 
sensitivity of 250 mV amplified each received signal, 
which was then digitized and displayed on a 
Tektronix TDS 224 oscilloscope before being 
transferred to a PC via a RS232 interface for storage 
and analysis. All transducers had an applied dc bias 
voltage of  +100V.  The transducers were mounted 
on Daedal rotary stages driven using stepper motors 
and custom electronics under RS232 control to an 
accuracy of 0.02°. The image plane was scanned at 5° 
intervals from 72 source transducer locations over 
360°. Each individual source scan fan beam was 
evenly sampled at 2.5° intervals, from 37 receiver 
positions opposite the source, in a 90° arc centred  
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(d) 

Figure 3: Reconstructions of a 38mm aluminium bar using (a) 2664 rays, (b) 684 rays, (c) 312 rays and (d) 84 rays 

 
 



along the diameter of the scan. The data acquisition 
and transducer movement was carried out under 
computer control via a RS232 serial interface. 
 

V RESULTS & DISCUSSION 
 

 Reconstructions of object images and 
temperature fields using fan beam tomography can be 
seen in Figure 3(a) to (d) and Figure 4(a) to (d) 
respectively. Figures 3(a) and 4 (a) were 
reconstructed using a full set of experimental scan 
data which consists of 2664 time-of-flight 
measurements (rays). Figures 3(b) and 4(b) were 
reconstructed using a reduced data set, representing 
an experimental set-up of 36 source transducers and 
19 receiver transducers with an angular separation of 
5° (684 rays). Figures 3(c) and 4(c) represent 24  
transmitters and 13 receivers with an angular 
separation of 7.5° (312 rays) and finally Figures 3(d) 
and 4(d) represent 12 transmitters and 7 receivers 
with an angular separation of 15° (84 rays).  

Figure 3(a) accurately reconstructs the 
position and the diameter of a 38mm aluminium bar 
located 10mm to the right of centre of the image 
plane, however as the number of projections (and 
samples) decreases the algorithm has increased 
difficulty in reproducing the objects size and shape. 
To avoid aliasing when attempting to reconstruct an 
object of diameter 38mm, a spatial sampling rate of 
at least 52.63 m-1 is required. Figure 3(a) and (b) are 
sampled at a rate of 122.7 m-1 and 60.25 m-1 
respectively. Figure 3(b) shows no obvious aliasing 
effects. This image has been reconstructed using 
about one quarter of the original data, which 
corresponds to a considerable time saving during data 
acquisition. Figure 3(c) shows evidence of aliasing 
with distinct streaks linking the centre of the scan 
area to the transducer positions creating a star shaped 
pattern. This type of aliasing artifact is also known as 
Gibbs phenomenon [1]. The sampling rate in this 
case is 39.76 m-1. Figure 3(d) shows aliasing to a 
greater extent due to an even lower sampling rate of 
19.23 m-1. 

 

-100 -80 -60 -40 -20 0 20 40 60 80 100

cm

-100

-80

-60

-40

-20

0

20

40

60

80

100

cm

280
285
290
295
300
305
310
315
320
325
330
335
340

K

 
(a) 

-100 -80 -60 -40 -20 0 20 40 60 80 100

cm

-100

-80

-60

-40

-20

0

20

40

60

80

100

cm

280
285
290
295
300
305
310
315
320
325
330
335
340

K

 
(b) 

-100 -80 -60 -40 -20 0 20 40 60 80 100

cm

-100

-80

-60

-40

-20

0

20

40

60

80

100

cm

280
285
290
295
300
305
310
315
320
325
330
335
340

K

 
(c) 

-100 -80 -60 -40 -20 0 20 40 60 80 100

cm

-100

-80

-60

-40

-20

0

20

40

60

80

100

cm

280
285
290
295
300
305
310
315
320
325
330
335
340

K

 
(d) 

Figure 4: Reconstructions of  a temperature field  using (a) 2664 rays, (b) 684 rays, (c) 312 rays and (d) 84 rays 

 
 



Figure 4 shows the reconstruction of a 
temperature field in air 40 mm above a 573 K heat 
source of diameter 4 mm, using the same sampling 
rates and source/receiver arrangements as Figure 3. 
The effect of aliasing in these images is not as 
obvious and all reconstructions reproduce the 
background temperature of 299 K. A K-type 
thermocouple and a Digitron 2000T thermometer 
were used to measure the temperature directly above 
the heat source in the scanning plane and a value of 
344 K was obtained. Figures 4(a) and (b) reconstruct 
centre temperatures of 340 K and 337 K respectively. 
These temperatures equate to accuracies of 98.8% 
and 97.9% respectively. 

It is clear from Figure 4(a) that the area of 
increased temperature has a diameter of 
approximately 40 mm (equating to a minimum 
sampling rate of approximately 50 m-1). As was the 
case with the object imaging the reconstruction in 
Figure 4(b) again gives an accurate reconstruction 
when only one quarter of the original data is utilised. 
Figures 4(c) and  (d) reconstruct centre temperatures 
of 326 K and 315 K respectively, which equate to 
accuracies of 94.8% and 91.6% respectively. This 
drop off in accuracy can again be attributed to 
aliasing effects resulting from sampling rates below 
50 m-1. 

 
VI CONCLUSIONS 

 
Tomographic reconstructions of object and 

temperature fields of approximate diameter 40 mm, 
within a scan area of diameter 100mm, using various 
sampling geometries have been carried out in air 
using prototype electrostatic transducers. The object 
images (Figure 3) show reconstructions of the 
diameter and the position of the aluminium bar with 
decreasing resolution as the number of projections 
(and samples) was reduced. The temperature images 
(Figure 4) all reconstruct the background velocity but 
the values of centre temperature are shown to 
diminish with accuracies of 99.8%, 97.9%, 94.8% 
and 91.6% when the number of rays utilised was 
2664, 684, 312 and 84 rays respectively.  

Reducing the data set by 75% (684 rays) 
produced no appreciable loss in accuracy in the solid 
object reconstruction, but any further reduction in the 
number of projections and samples was associated 
with the introduction of aliasing artifacts. However in 
this work the temperature images do not exhibit the 
expected Gibbs phenomena but the effects of 
reducing the sampling rate can clearly be seen in the 
accuracy of the centre temperature reconstruction. 
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