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Abstract -- An ultrasonic tomographic imaging system has been developed 
and used to image solid object distributions, temperature variations, and 
flow velocity fields in air. The system consisted of a pair of novel curved 
divergent air-coupled electrostatic ultrasonic transducers that were 
positioned under computer control in a fan-beam geometry as required. A 
modified filtered back-projection algorithm was used for the 
reconstruction, and the effect of different kernel filter functions used on 
the quality of the reconstructed images was investigated. 

 
 

 
I INTRODUCTION 

 
Ultrasonic tomography [1] is widely used in 

medicine [2] and engineering [3] to produce cross-
sectional images of spatial variations in physical 
properties, using only measurements made at the 
periphery of the plane of interest. Backscatter or 
reflection tomographic techniques [4] are used where 
it is difficult to propagate ultrasound directly through 
the plane of interest. These techniques utilise the 
ultrasonic energy deflected back from discontinuities 
where there is a large mismatch in specific acoustic 
impedance, for example cracks or defects in solids 
[5], bubbles in liquids [6], and solid objects in air [7]. 
Transmission tomography [8] is used where it is 
relatively easy to propagate ultrasound through the 
plane of interest, and utilises the ultrasonic energy 
that has travelled directly between source and 
receiver. This technique is sensitive to slight 
variations in specific acoustic impedance and hence 
acoustic velocity and density changes in the medium. 

Tomographic cross-sectional images may be 
produced using one of two main types of 
reconstruction algorithm. Series or expansion 
methods such as ART [9] and SIRT [10] use iterative 
techniques, and effectively pixelize the area to be 
imaged. An initial weighted property value is 
assigned to each pixel. These values are then 
modified in successive iterations until a solution is 
reached. These techniques can account for non-linear 
effects such as ray-bending and anisotropy, but are 
computationally inefficient and the reconstruction 
times are relatively long. Fourier transform 

methods [11] require a well defined, regular sampling 
geometry in either a parallel-beam or fan-beam 
configuration [12], but are quicker to implement than 
iterative techniques. Essentially, datasets taken at 
different angles through the area to be imaged are 
multiplied by a kernel function in the Fourier domain, 
and then back-projected to give the reconstructed 
cross-sectional image. The type of kernel function 
used has a significant effect on the accuracy of the 
reconstruction and the quality of the image obtained. 

Little attention has been paid to 
tomographic imaging of gaseous media [13]. This is 
due in no small part, until recently, to the lack of 
suitable ultrasonic transducers capable of generating 
and detecting broadband high frequency (MHz) 
ultrasound in air and other gases [14-17]. Small 
variations in density and acoustic velocity are 
produced in gases by changes in temperature, and 
hence are ideal for imaging along with flow velocity 
fields using ultrasonic transmission tomography if 
suitable transducers are available. 

The work to presented here will investigate 
ultrasonic tomographic imaging of the spatial 
variation in temperature and flow velocity in gases, 
using ultrasonic transducers based on an electrostatic 
principle arranged in a fan-beam geometry. A Fourier 
transform method based on a filtered back-projection 
reconstruction algorithm, with rebinning occluded 
data compensation, will be implemented in 
LabVIEW® and will also be used to investigate the 
effect of different Kernel functions on the 
reconstructed images. 
 



II FAN-BEAM GEOMETRY 

A typical fan-beam sampling geometry is 
shown in Figure 1. A divergent source x1 producing a 
wide beam of ultrasound is positioned at the 
periphery of the area of interest. A receiver y is 
moved through a series of regularly spaced positions 
y1, y2, … yn opposite the source, to produce a fan-
shaped set of rays known as a projection. The source 
is then moved to new positions x2, x3, … xn in regular 
steps and the process repeated, so that a whole series 
of projections at different angles through the scanned 
area is obtained. A property of each ray in each 
projection is measured and passed into the 
tomographic reconstruction algorithm. This is usually 
propagation time, but may also be amplitude or 
frequency content. 

For any ray path between a transmitter x 
and receiver y, both the local speed of sound and the 
gas flow velocity will have an effect on the 
propagation time txy, given by: 
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where cr is the speed of sound at any position r along 
the ray path, v is the local flow velocity of the gas 
and  is a unit vector parallel with the ray path and 
pointing in the direction of integration. For 
ultrasound propagating in air, the local sound speed 
c

r̂

r is also related to air temperature T in Kelvin by 
[18]: 
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and so a reconstructed image of the spatial variation 
in slowness within the scanned area will indicate the 
presence of solid objects, air flows, or changes in air 
temperature. Further details of this temperature and 
flow reconstruction technique can be found in earlier 
work on parallel beam tomography in gases by 
Wright et al [13]. 

III FILTERED BACK PROJECTION 
ALGORITHM 

Let f(x,y) be the spatial distribution of 
acoustic slowness (the slowness function) in the area 
to be scanned [1,11]. The (x,y) coordinate system 
rotated through any angle θ is denoted (s,t), where: 
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as shown in Figure 2. 
The projection pθ(s) of the slowness function 

fθ(s,t) at an angle θ through the region is given by: 
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and its Fourier transform P(S) by: 
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Hence: 
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The Fourier transform Fθ(S,T) of the slowness 
function fθ(s,t) at an angle θ through the region is: 
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When evaluated at T = 0 at the centre of the region,  
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which is simply the transform of the projection in 
equation (6). Hence: 
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Thus the projection theorem states that the 1-
dimensional Fourier transform of a projection of the 
slowness function at any angle θ is equivalent to the 
2-dimensional Fourier transform of the actual 
slowness function at the same angle θ, but through 
the centre of the scanned region. 
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Figure 2: The rotated coordinate system. 

Figure 1: Fan-beam sampling geometry. 



The slowness function f(x,y) may be found at 
any point from the inverse Fourier transform: 
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Using polar coordinates: 
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in the spatial domain and: 
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in the Fourier domain, and: 
ϕθϕθϕθ sinsincoscos)cos( +=−         (13) 

equation (10) reduces to: 
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where: 
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By substituting the transform of the 

projection Pθ(R) for the slowness function F(Rcosθ, 
Rsinθ), and introducing a new variable r´=r cos(θ - φ) 
equation (14) reduces to: 
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The inner integral in equation (16) is simply a 
convolution in the Fourier domain of the projection 
pθ(r) with a kernel function k(r) whose Fourier 
transform is |R|. By defining a new function gθ(r) 
which is the result of this convolution, given by: 
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Equation (16) finally reduces to: 
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This is just a simple backprojection of all the 
convolved projections gθ(r´) associated with all the 
rays passing through (x =r cosφ, y = r sinφ). 
Therefore the slowness function may be obtained by 
convolving all the projections with a kernel function, 
which is a filtering operation in the Fourier domain. 
 

IV THE KERNEL FUNCTION 
 
 As the data consists of m projections at 
regular angular intervals, each containing n rays 
regularly spaced at intervals of ∆s, Riemann 

approximations to the integrals may be used. Due to 
the discrete sampling period ∆s in each projection, 
the convolutions will be bandwidth limited by the 
Nyquist theorem to a cut-off frequency of 
B = 1/(2∆s). To prevent aliasing, the ray spacing 
must be ∆s ≤ 1/(2s0), where s0 is the highest spatial 
frequency of interest. 

The kernel function must therefore be 
zeroed above the cut-off frequency, leading to high 
frequency oscillations in the reconstruction when the 
ideal Ram-Lak kernel function ⏐R⏐ is used. 
Therefore an additional windowing function is often 
used to suppress this high frequency noise by 
reducing the step at the cut-off frequency. There are a 
number of different kernel filter functions that may 
be used in the filtered back projection reconstruction 
algorithm, with a selection shown in Figure 3: 
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Figure3: Typical Kernel filter functions. 
 
The basic Ram-Lak function ⏐R⏐ is 

windowed to give the Shepp-Logan kernel function: 
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the Cosine kernel function: 
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and the Hamming kernel function: 
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usually with the roll-off α = 0⋅54. 
 The selection of the kernel filter function 
can therefore have a significant effect on the quality 
of the reconstructed image, depending on the 
magnitude of the variations in acoustic slowness in 
the imaging plane. Where there are large 
discontinuities in slowness, for example in the 
tomographic imaging of solid objects in air, the low 
frequencies in the transformed projections in the 
Fourier domain will be reduced and the high 
frequencies emphasised by the basic Ram-Lak and 
Shepp-Logan filters, introducing noise into the 
reconstruction. Where only slight variations in 
acoustic slowness exist, for example in the 
tomographic imaging of temperature distributions or 
flow velocity fields, the necessary high frequencies 



will be reduced by filters such as the Cosine and 
Hamming. For general reconstructions, filters that 
emphasises the mid-range of frequencies will be most 
appropriate. Some prior knowledge of the expected 
slowness variations is therefore advantageous. 
 

V RE-BINNING FAN-BEAM DATA 
 

The filtered back-projection algorithm 
requires projections of regularly spaced parallel rays 
of equal length. These can be obtained from 
projections of fan-beam rays using a process known 
as re-binning [12]. 

In multiple fan-beam projections, certain 
rays in different projections will be parallel to each 
other, e.g. rays x1y2 and x2y3 in Figure 1. All the 
parallel rays from different fan-beam projections may 
be grouped together to form projections of parallel 
rays of unequal length and irregular spacing, as 
shown schematically in Figure 4. The ray spacing is 
equalised by a simple linear interpolation between 
adjacent values in the projection. The length of each 
ray is extended by extrapolating by δLn as required, 
assuming that the acoustic slowness along the raypath 
outside the scan area is identical to the background 
slowness value within the scanned region, increasing 

the total propagation time from tn to Tn for each ray 
according to: 
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where cref is obtained from the first ray (L0, t0). The 
re-binned projections may then be used in the 
standard parallel beam filtered back projection 
reconstruction algorithm. 
 

VI EXPERIMENT 
 

In order to maximise the number of rays in 
each projection, a divergent source and receiver are 
required, as can be seen from Figure 1. A pair of 
novel curved electrostatic ultrasonic transducers was 
employed for both generation and detection of 
ultrasound in air. They consisted of polished convex 
metal backplates with a 10 mm radius of curvature 
and 5µm thick metallised PET dielectric film, and 
operated at a centre frequency of 400 kHz with a 
-6dB bandwidth of 300 kHz. The basic operation of 
electrostatic transducers has been described 
elsewhere [14-16]. 

The experimental configuration is shown 
schematically in Figure 5. The source transducer was 
driven by a Panametrics Pulser-Receiver (Model 
500PR) that delivered a negative spike of up to -
250 V with a pulse energy of up to 19.4µJ, and 
biased using a 100V dc supply. The receiver was 
connected to a Cooknell SU2/C power supply that 
provided a dc bias of 100V, and to a Cooknell CA6/C 
charge amplifier with a sensitivity of 250 mV/pC. 
Each transducer was mounted on a rotary stage 
driven using a stepper motor under RS-232 control 
with a resolution of ±0.02°. The received waveforms 
were then digitised on a Tektronix TDS224 
oscilloscope and transferred to a PC via a RS-232 
interface for storage and analysis. 

Each tomographic scan consisted of 37 
receiver positions at 5º intervals opposite the source, 
and 72 source locations in 360º. Not all of this data 

Figure 4: Re-binning the parallel rays. 
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Figure 5: Schematic diagram of experimental apparatus. 



was required for the re-bin routine, but it was 
necessary to ensure that all of the required parallel 
ray paths were collected. The data acquisition and 
transducer positioning processes were automated, 
using routines written in LabVIEW® and RS-232 
interfaces. Each waveform was acquired in 
approximately 10 seconds.  
 

VII RESULTS AND DISCUSSION 
 

Due to the large volume of generated data, 
only a brief selection of images can be shown here. 
Figures 6(a) and 6(b) show the reconstructed images 
of acoustic velocity (reciprocal of slowness) in the 
scan area with the centre of a 38 mm diameter 
aluminium cylinder located at the coordinates 
(0,-10) mm, for the Ram-Lak and Hamming kernel 
filter functions. As no waveform could be measured 
travelling directly through the cylinder, there were no 
propagation times associated with occluded raypaths. 
A threshold amplitude was therefore employed on the 
sampled data, with a user-defined propagation time 
delay inserted to replace the occluded rays. Hence the 
speed of sound within the object region is entirely 
artificial. It can be seen that the Ram-Lak filter 
emphasises the high frequency noise introduced into 
the reconstruction by the use of occluded data and 
diffraction around the object. The Hamming filter is 
more appropriate for imaging the distribution of solid 
objects as the higher frequencies are suppressed. 

In order to image the spatial distribution of 
temperature, a 6 mm diameter heat source at a 
constant temperature of 573 K was held centrally 
below the scanning plane. Reconstructed slowness 
values were converted into spatial variations in 
temperature using equation (2) and a typical image is 
shown in Figure 7, with the heat plume clearly visible 
in the centre of the image. The background air 
temperature reconstructed from the tomographic data 
was between 4% and 7% of the actual air temperature 

measured using a 1 mm diameter K-type 
thermocouple. The temperature directly above the 
heat source was reconstructed to be within 9% of the 
measured value of 362 K at the height of the 
scanning plane. The physical size of the transducers 
meant that considerable spatial averaging occurred to 
the signals passing through the scan area, which 
would affect the accuracy of the reconstruction. The 
background air temperature also fluctuated by ±5 K 
during the data collection, which means that the 
temperatures would be time averaged. As a 
difference technique based on the first ray of the first 
projection was used, any variations in ambient 
temperature after this initial acquisition would also 
affect the reconstruction. The Cosine filter appeared 
to give the best compromise between image detail 
and noise in the reconstruction. 

Finally, Figure 8 shows a typical 
reconstruction using the Shepp-Logan kernel function 
of the flow profile above a 2.7 mm diameter nozzle 
connected to a compressed air source with a flow rate 
of 0⋅5 litres/second measured using a Platon A10HS 
flowmeter. This figure shows the additional 
horizontal components of the flow velocity of the air 
jet, reconstructed from slowness data using a value of 
347 ms-1 for cr in Equation (1). The maximum 
additional horizontal component of the flow is shown 
to be 8.6 ms-1 at the centre of the scan area, which is 
in good agreement with theory. As the turbulence 
from the nozzle is rapidly fluctuating, the velocities 
are effectively time averaged over the data 
acquisition period and the Hamming or Cosine filters 
may give more realistic results. However, for faster 
acquisition times, more of the turbulent detail would 
be included in the image, and the Ram-Lak or Shepp-
Logan filter would then be more appropriate. The 
information reconstructed within the scan area is still 
limited by the same constraints concerning transducer 
size, turbulence, time-averaging, compressibility and 
ray bending. 
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Figure 6: Reconstructions of solid distribution (inverse slowness function). 
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Figure 7: Reconstruction of temperature. Figure 8: Reconstruction of flow velocity. 

VIII CONCLUSIONS 
 

The effect of kernel filter function on the 
tomographic reconstruction of ultrasonic images in 
air has been investigated. Using an imaging system 
consisting of a pair of novel curved electrostatic 
ultrasonic transducers under computer control and a 
filtered back-projection algorithm, images of solid 
object distribution, temperature variation and flow 
velocity in air were produced. The Hamming filter 
function that suppressed high frequencies was most 
suitable for solid object distribution, and the Cosine 
filter was most suitable for detailed temperature 
distributions. The filter choice for flow velocity 
imaging was determined by the level of detail 
required, with the Shepp-Logan filter function giving 
the best compromise. 
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